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DIVERSE HUMAN ANNOTATORS
ARE USED EVERYWHERE!
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speaker)

Other Clinical Domains: Autism Spectrum Disorder (ASD),
Psychotherapy for Addiction

Ambiguity in production and perception of human
behavioral phenomena - Absence of ground truth labels.
All these human behavioral datasets involve labeling by
diverse human annotators.

Why model diverse human annotators?
* Simple plurality has strict assumptions.

* Need to infer the latent true label.

* Need interpretable feedback about annotator reliability.

SOME CHALLENGES

e We don’t know the true label.

* Need to jointly learn a behavioral classifier with the
annotator model.

* Most importantly: Need a realistic annotator model!

* Key: Annotator reliability varies with data.
— Globally-variant, locally-constant.
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STATISTICAL MODELS OF DIVERSE
HUMAN ANNOTATORS

Noisy-channel models: Annotators flip latent true label
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3. Unequal annotator reliability + classifier
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4. Unequal data-dependent annotator reliability +
classifier (GVLC model)

(In press) K. Audhkhasi and S. S. Narayanan, “A Globally-Variant Locally-
Constant Model for Fusion of Labels from Multiple Diverse Experts Without
Using Reference Labels”, IEEE Trans. On Pattern Analysis and Machine
Intelligence, 2012
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Performance gains over many affective computing (human
annotators) and UCI (machine classifiers) datasets.

TEEM (v1.0): MATLAB TOOLKIT

* Toolkit of Expert Ensemble Models (Download:
www-scf.usc.edu/~audhkhas/software/teem.zip).

* Expectation-Maximization training and testing, logistic
regression (Max. Entropy) classifier.




